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Abstract 

 
This project focuses on how humans master new categories by learning from 
examples with extension to dynamic environments.  Decision making tends to 
take place in dynamic environments in which successive decisions are contingent 
on one another, and in which the rewards associated with actions can be delayed, 
yet most tasks that have been studied in the laboratory are broken up into brief, 
independent trials (e.g., classification of a stimulus) in which responses are 
determined only by the immediate context and have no bearing on future states 
of the task environment.  Thus, this project narrows the gap between the range of 
mental processes typically addressed by cognitive scientists and the mental 
processes that underlie performance in Air Force relevant activities.  We find that 
people's performance profiles are generally consistent with modern 
reinforcement learning models.  For example, including perceptual information 
that disambiguates a person's current state within a task improves performance.  
Additionally, consistent with model-based predictions, people appear to hill 
climb on reward gradient, as opposed to globally optimize performance, and 
show other suboptimal behavior, such as poorer performance under certain 
circumstance when given more information about response options. 
 
 

Project Overview 
 
In this project, the PI and his collaborators have made progress in understanding 
human category learning and have extended this work to dynamic decision 
making environments.  Below, findings from this project are briefly reviewed.  
Following this review, doctoral students who have graduated during this project 
are listed, as our project publications. 
 
Todd Gureckis and the PI have published a number of articles that develop the 
sequential learning aspects of the project.  In the Cognitive Science article, we 
conduct a formal model comparison of simple recurrent and buffer networks and 
find that the simpler buffer networks do a better job of characterizing human 
learning and sequential performance.  Surprisingly, there has been little previous 
fine grain evaluation of sequential learning models. We derived predictions from 
our buffer network and found a strong linear (through time) constraint on 
human sequential learning that is not present in human category learning. 
 
In two papers, one published in the Journal of Mathematical Psychology and the 
other in Cognition, we explore human learning and decision making in a 
dynamic environment in which short- and long-term rewards are put in conflict.  
We find that people can learn to make long-term responses when state cues are 
present that de-alias underlying system states and allow for generalization of 
rewards to yet unexplored states.  In noisy environments, we find that noise on 
state cues is much more detrimental to human and model performance than is 
equivalent noise on rewards, even though rewards define the learning problem.  
In fact, moderate levels of noise on rewards can be beneficial in that it 
encourages exploration in a task in which humans and models under explore.  



We use simple reinforcement learning models to derive our study designs and 
characterize our results. 
 
Three other papers have been published exploring human learning and decision 
making when short- and long-term rewards are in conflict.  In a paper published 
in Psychonomic Bulletin & Review, we examined whether state cues make 
people more rational or just more sensitive to the gradient of reward as our 
models predict.  By comparing performance when reward curves are close or far 
apart, we found that state cues led people to be more sensitive to reward 
gradient, not more rational.  People hill climbed toward states with increasing 
rewards even when doing so was not optimal.  In a Judgment and Decision 
Making paper, we found (as reinforcement learning models predict) that giving 
additional information about forgone rewards (i.e., information about the choice 
option not selected) lowers performance (i.e., people meliorate and choose the 
short-term option).  Finally, in a Journal of Experimental Psychology: Learning, 
Memory, & Cognition paper, we manipulate people's motivational focus and 
find a systematic effect on people's exploration strategies.  In particular, people 
are more streaky (i.e., explore systematically by making a number of identical 
responses consecutively) when in a regulatory fit motivational state. 
 
In two papers (a Memory & Cognition and Psychological Science paper), we find 
that people’s estimation of category mean and variance is consistent with error-
driven learning models that make sequential updates.  In the Psychological 
Science paper, we find that people’s conceptions of categories distort away from 
contrasting categories.  The mechanisms we explore in these papers can explain 
high-level idealization effects.   
 
Finally, in a second Memory & Cognition paper, we find evidence for two 
pathways for stimulus encoding.  We borrow theoretical ideas from the object 
recognition literature.  We find that one pathway that experts use is holistic and 
whereas the second pathway is more part-based or discrete.  This latter pathway 
requires effortful processing to decompose and analyze stimulus parts.  
Although many researchers have explored the possibility that there are multiple 
learning systems in the brain, fewer have explored the possibility that visual 
stimuli can be encoded in multiple formats. 
 
A final journal article most closely related to the proposed work is the Maddox et 
al. contribution.  In that paper, rule-based and information-integration category 
learning were compared under minimal and full feedback conditions. Rule-based 
category structures are those for which the optimal rule is verbalizable. 
Information-integration category structures are those for which the optimal rule 
is not verbalizable. With minimal feedback subjects are told whether their 
response was correct or incorrect, but are not informed of the correct category 
assignment. With full feedback subjects are informed of the correctness of their 
response and are also informed of the correct category assignment. An 
examination of the distinct neural circuits that subserve rule-based and  
information-integration category learning leads to the counterintuitive prediction 
that full feedback should facilitate rule-based learning but should also hinder 
information integration learning.  These predictions held.  The results were 



modeled by a reinforcement learning system and a Bayesian hypothesis testing 
system whose outputs were combined by a gating mechanism.  The 
reinforcement learning systems processing of only feedback valence was 
explained by making recourse to additional dynamic tasks it subserves, like 
motor control and the kinds of problems considered in the aforementioned 
Gureckis and Love papers. 
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